skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Xuechun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A catastrophic Mw7.8 earthquake hit southeast Turkey and northwest Syria on February 6th, 2023, leading to more than 44 k deaths and 160 k building collapses. The interpretation of earthquake-triggered building damage is usually subjective, labor intensive, and limited by accessibility to the sites and the availability of instant, high-resolution images. Here we propose a multi-class damage detection (MCDD) model enlightened by artificial intelligence to synergize four variables, i.e., amplitude dispersion index (ADI) and damage proxy (DP) map derived from Synthetic Aperture Radar (SAR) images, the change of the normalized difference built-up index (NDBI) derived from optical remote sensing images, as well as peak ground acceleration (PGA). This approach allows us to characterize damage on a large, tectonic scale and a small, individual-building scale. The integration of multiple variables in classifying damage levels into no damage, slight damage, and serious damage (including partial or complete collapses) excels the traditional practice of solely use of DP by 11.25% in performance. Our proposed approach can quantitatively and automatically sort out different building damage levels from publicly available satellite observations, which helps prioritize the rescue mission in response to emergent disasters. 
    more » « less
  2. On February 6, 2023, a major earthquake of 7.8 magnitude and its aftershocks caused widespread destruction in Turkey and Syria, causing more than 55,000 deaths, displacing 3 million people in Turkey and 2.9 million in Syria, and destroying or damaging at least 230,000 buildings. Our research presents detailed city-scale maps of landslides, liquefaction, and building damage from this earthquake, utilizing a novel variational causal Bayesian network. This network integrates InSAR-derived change detection with new empirical ground failure models and building footprints, enabling us to (1) rapidly estimate large-scale building damage, landslides, and liquefaction from remote sensing data, (2) jointly attribute building damage to landslides, liquefaction, and shaking, (3) improve regional landslide and liquefaction predictions impacting infrastructure, and (4) simultaneously identify damage degrees in thousands of buildings. For city-scale, building-by-building damage assessments, we use building footprints and satellite imagery with a spatial resolution of approximately 30 meters. This allows us to achieve a high resolution in damage assessment, both in timeliness and scale, enabling damage classification at the individual building level within days of the earthquake. Our findings detail the extent of building damage, including collapses, in Hatay, Osmaniye, Adıyaman, Gaziantep, and Kahramanmaras. We classified building damages into five categories: no damage, slight, moderate, partial collapse, and collapse. We evaluated damage estimates against preliminary ground-truth data reported by the civil authorities. Our results demonstrate the accuracy of our classification system, as evidenced by the area under the curve (AUC) scores on the receiver operating characteristic (ROC) curve, which ranged from 0.9588 to 0.9931 across different damage categories and regions. Specifically, our model achieved an AUC of 0.9931 for collapsed buildings in the Hatay/Osmaniye area, indicating a 99.31% probability that the model will rank a randomly chosen collapsed building higher than a randomly chosen non-collapsed building. These accurate, building-specific damage estimates, with greater than 95% classification accuracy across all categories, are crucial for disaster response and can aid agencies in effectively allocating resources and coordinating efforts during disaster recovery. 
    more » « less